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Correlation functions in the two-dimensional Gaussian-column 
model of the interface in a weak external field 

J Dudowicz 
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 
Warsaw, Poland 

Received 6 July 1988 

Abstract. Calculations of the correlation functions C and Ccond for the two-dimensional 
Gaussian-column model of the interface in a weak gravitational field, G + O+, indicate the 
universality of the parametrisation of the direct correlation function C, found for the SOS 
model by Stecki, Ciach and Dudowicz. The representations of the conditional correlation 
function Ccond are slightly different in these two models. 

1. Introduction 

The structure of the interface as described by the correlation functions, interfacial 
tension and susceptibilities has been studied recently (Stecki and Dudowicz 1986a, b, 
Stecki et a1 1986, Ciach et a1 1987, Dudowicz 1988, Hemmer and Lund 1988). These 
studies concerned the interface between two coexisting fluid phases represented by 
the two-dimensional ( d  = 2) ( M  x CO) solid-on-solid model. The interface is localised 
by the presence of the external field G and/or the finite size of the system; otherwise 
fluctuations are unbounded. It is known that any external potential, however weak, 
pins the interface even in two dimensions (van Leeuwen and Hilhorst 1981). Interesting 
analytical studies of solid-on-solid models and wetting in two dimensions in external 
fields were carried out by Privman and Svrakic (1988). 

In a recent extension of these results to three dimensions ( d  = 3), Ciach (1987) 
found a non-analyticity of the Fourier transform of C in the transverse direction, in 
contradiction with the usual assumptions. 

We have extracted some ‘intrinsic’ quantities, i.e. quantities that exist in the limit 
of infinite interface width, W +  CO. The latter can be obtained either in the limit of 
weak external field, G -$ O+, or for system sizes increasing indefinitely. In other words, 
there are some quantities which diverge as W +  CO, some which vanish, some which 
are ill defined and some which obtain well defined limiting values. The latter are 
intrinsic properties, examples of which are the interfacial tension and the correlation 
lengths of suitably redefined two-point functions. Neither the density profile nor the 
susceptibilities are intrinsic properties. 

For the Orstein-Zernike direct correlation function C in the SOS interface in the 
limit of G+O+, the following representation was found (Stecki et a1 1986): 

e ( k L ;  A ~ , Z ) = ~ W ~ X ~ [ ( ~ + E ( A ~ ) G ” ~ ) ( Z /  W)2]M(IAzl; k,) (1.1) 

where e ( k , ;  Az, Z )  is the Fourier transform of C(Ax; Az, Z )  and k, is the Fourier 
variable in the transverse direction x. The coefficient B ( A z )  and the matrix M ( A z ;  k,) 
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depend on the relative distance Az = z 2 -  z1 only, the other distance variable Z is 
defined as 2 = ( z1 + z2 - 2z0)/2 where zo corresponds to the middle of the system. The 
interface width W is 

W = G-1’4(2 sinh pJ)-’” 

where J is the coupling energy constant and p = 1/ kT. 
Recent asymptotic calculations by Hemmer and Lund (1988) for weak gravitational 

fields confirmed the validity of parametrisation (l.l), i.e. fast variation with Az and 
slow variation with Z/ W. 

It was also found that in the limit of G + 0’ the matrix M(Az; k,) takes the form 

M(Az; k,) = t + A  exp(-(Az(/[ll) (1.3) 

where t is a tridiagonal matrix, A is a temperature-dependent coefficient and ell is the 
longitudinal (in the z direction) correlation length. In the limit of G+ 0 (W+CO),  M 
is identical with the conditional correlation function Ccond, introduced by Ciach (1986); 
she also found expression (1.3) with 

(1.4) 6-1 ll - - - In(D-JD2-  1) D = 2  cosh 2 p J -  1. 

In the present paper we check the universality of (1.1)-(1.3) by studying a slightly 
different model of the interface, i.e. the Gaussian-column model which produces, at 
a given temperature, a smoother and less fluctuating interface. Both models take into 
account only nearest-neighbour interactions, and are represented by Hamiltonians 
belonging to the same class H = Z i  2PJlhi - hi+llo, with exponent a = 2 for the Gaussian 
model and a = 1 for the SOS model. For the Gaussian model smaller external fields 
are sufficient to ensure an accurate extrapolation of computed functions to their limiting 
values for G + O+. 

2. Parametrisation of the direct Orstein-Zernike correlation function 

The Gaussian model of the interface was introduced by Chui and Weeks (1976) and 
was then applied to studies of interfacial phenomena by many authors (see, for example, 
Chui and Weeks (1978), Weeks (1977) and Bedaux e? a1 (1985)). 

The system is a two-dimensional array ( M  x 00) of columns of heights {hi}, Os h s 
M, with periodic boundary conditions in the x direction, -00 < i <CO. The column- 
column interaction energy is 

J>O. 

The external potential Vext( h )  pinning the interface 

Vext( h )  = GI h - h0I2 G>O (2.2) 
represents the gravitational potential (van Leeuwen and Hilhorst 1981) and ho corre- 
sponds to the middle of the system. So the energy H of the interface, up to an arbitrary 
constant, is given by 

H = E ( { h i } )  + Vext(hi).  
I 

The method of computation we shall use is the transfer matrix technique described 
elsewhere (Stecki and Dudowicz 1986b). 
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We begin with the determination of the interface width W. Usually, W and the 
probability, p (  h ) ,  that a single column has height h (or p ( z )  in variables z )  are related 
by 

exp[-(z - w2] 
G W  P ( Z )  = (2.4) 

and p ( z ) ,  in turn, is usually related to the density profile by 

p ( z )  = - V p ( z )  = p ( z ) - p ( z -  1). (2 .5 )  
Equations (2.4) and ( 2 . 5 )  are used for determining W for a given size M ( G  is assumed 
to take a value which does not change the eigenvalues A i  and eigenvectors xi of the 
( M  + 1) x ( M  + 1) transfer matrix T, in terms of which all the quantities under study 
can be expressed (Stecki and Dudowicz 1986b)). Figure 1 shows that 

W = G-1/4 x constant. (2.6) 
By employing the computed values of W, one obtains the universal density profile, 
p ( y  = Iz - zol/ W ) ,  common for all systems of sizes ( ,M x CO) (see figure 2). This confirms 
the universality of the asymptotic exponent, -1/4, of G. 

I 
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Figure 1. The linear variations of the interface width 
W calculated from probability p ( z , )  (see equations 
(2.4) and (2.5)) with the external field G-1'4 for a 
two-dimensional ( M  x CO) Gaussian-column model 
at T = 0.3 T, in the range of M = 29-109. T, is related 
to the king model. 
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Figure 2. The density p ( y )  against y = / z  - zol/ W at 
T = 0.3 T,. Data points (G = 1.666 66 x A 
(G=8.333 33xlO-'), 0 (G=4 .16666~1O-~)and+  
(G = 1.666 66 x fall on a common curve. 
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The validity of representation (1.1) extended to the Gaussian model is shown in a 
very convincing way by plotting 

e( k, = 0; Az, 2)  
E ( k , = O ; A z , Z = O )  

A,, = ( w/z)2 In ( (2 .7)  

against G”2 (figure 3) .  All curves corresponding to a given value of lAzl meet at G = 0 
at a common value A, = 1. If we try to extend the exponential term in expression (1.1) 
to a more general form 

exp[Ao(Z/ W2+A2(Z/  W4+AA,(Z/ w61 (2 .8)  
we find that A2 = A4 = 0 in the limit G + O+, as was obtained for the SOS interface by 
Stecki and Dudowicz (1986a). The longitudinal correlation length tI1 may also be 
computed from the relation 

e( k, = 0; IAzl+ 2 , Z )  
c ( k ,  = 0; IAz(, 2) = -f In ( ) 1Azla2  (2.9) 

and is shown for a few pairs Az, 2 as a function of G’” in figure 4. An analytical 
expression for (like equation (1.4)) for the Gaussian model has not been derived. 
The longitudinal correlation length is common to the direct correlation function C 

0 0.01 0.02 0.03 
‘1’2 

0.270 1 
0 0.01 G 1 / 2  0.02 0.03 

Figure 3. The coefficient A,, computed from (2.7) 
plotted against at T = 0.3 T,. Curves are label- 
led with the value of IAzI = lz2-z1/. 

Figure 4. The longitudinal correlation length [,, com- 
puted from (2.9) as a function of GI/’ at T = 0.3 T,. 
Lines A, C and D correspond to Z = 0 and Az = 2,4 
and 6 respectively, line B corresponds to 2 = 4 and 
Az = 3. The intercept [p = 0.271 15. 
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and the conditional correlation function Ccond.  The conditional correlation function 
Ccond, introduced for the first time by Ciach (1986) is of the order of unity, whereas 
C is of order W. For W -+ 00 ( G  + 0 + )  Ccond takes its limiting value C Z n d  which is a 
function of the relative distance 1 Azl only. Figure 5 shows the convergence of econd( k, = 
0, Az, 2) for Az = 0 and various 2 to one asymptotic value eznd( k ,  = 0, Az = 0). When 
Az # 0 we obtain for each 2 two curves e c o n d (  k ,  = 0; Az) against G’”-one correspond- 
ing to positive Az, the other to negative Az, since Ccond is not symmetrical with respect 
to the interchange of z, and z2 .  Theje two curves, however, converge in the asymptotic 
limit G + O+ to the limiting value Cznd(k, = 0; lAzl) (see figure 6). 

We find that &,nd in the Gaussian model can be expressed as 

e c o n d ( k L = O ;  AZ, z)=DtS(-l)lA’IE exp( -lAzl/@l,) (2.10) 

where D, is a tridiagonal matrix with non-zero elements for Az =0, * l .  E is a 
temperature-dependent coefficient and is the longitudinal correlation length, which 
can be computed from the expression, similar to (2.9), 

t 0.162 I 

i’ 

2 :o 

0 0.01 0.02 0.03 
112 

(2.11) 

I L 
0 0.02 0.03 

Figure 5. The Fourier lransform of the conditional 
correlation function, Ccond( k,  = 0; Az = 0, Z) plot- 
ted against G112 at T = 0.3 T,. Curves are labelled 
Fith the value of 2 = (zl + z2 - 2z0)/2. The intercept 
C&,(k,=O; Az=O)=O.15625. 

Figure 6. The Fourier transform of the conditional 
correlation function Ccond( k, = 0, lAzl= 1,Z = f) 
plotted against G112 at T = 0.3 T,. The upper curve 
corresponds to Az = 1 and the lower one to Az = -1. 
These two curves converge to a common value of 
-0.105 25 at G112 = 0. 
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where Az4-2 corresponds to positive Az and Az-2 corresponds to negative Az. 
Extrapolation of fll to G + O+ gives the same value for all pairs Az, 2, which is identical 
with 67 extracted from the direct correlation function C. According to (2.10) the 
coefficient E can be found from 

(2.12) 

The extrapolated (to G + O+) value E" = 44.422 (see figure 7) is in excellent agreement 
with 

(2.13) 

Determination of E" makes it possible to find the elements of the tridiagonal matrix 
Dt.  From (2.10) we have 

D,"(Az=O)=CZnd(kL=0, Az=O)-E" (2.14) 

D,"(lAzl=l)=CZnd(ki=O, IAzl=1)+ E"exp(-l/fll). (2.15) 

The matrix M(AZ) in representation (1 .1)  is simply Csnd(Az) for W+W. Extrapo- 
lation to G + O+ of the elements of M(Az, k, = 0) computed from the simplified form 
of (1.1) (with B = 0 )  

e( k, = 0, Az, 2) 
exp[ - (Z/ W)'I J;;W 

M(Az, k, = 0) = 

gives exactly CZnd(k, = o , ~ A z ~ ) .  

t 
44.2 a 

0 0.01 G,,2 0.02 

(2.16) 

Figure 7. The coefficient E defined by (2.10) and computed from (2.12) plotted against 
G"' for T = 0.3 T,. The intercept Em = 44.422. 
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Table 1. Comparison of the values found for various quantities in the Gaussian and SOS 

models. Note that T =  0.3Tc (king), i.e. PJ =0.4407/0.3. 

Gaussian model SOS model 

WG1I4 = constant 
WG'/4 = (2 sinh PJ)-'" 

Em 
D;"(Az = 0) 
D;"(lAzl= 1 )  
eSnd(k, = 0; Az = 0) eznd(kL = 0; lAzl= 1) 
eS,,,( k ,  = 0; lAzl= 2) 

k,  = 0; 1 Azl = 3) 
k,  = 0; jAzl= 4) 

s;P 

0.467 85 

0.271 15 
44.422 

-44.266 
1.006 3 
0.156 25 

-0.105 25 
0.027 812 

0.174 13 X 

-0.684 0 X lo-' 

0.492 99 
0.279 42 

32.020 

-1 
0.161 39 

-0.106 35 
0.024 941 
0.695 0 X lo-' 
0.194 27 X low4 

-31.859 

Table 1 contains &,",,,(k, = O ;  ( A z l )  for a few small values of [Azl and other 
quantities (equations (2.9)-(2.15)) extrapolated to the asymptotic limit W + CO. The 
corresponding values for the SOS system are also presented for comparison. We also 
expect (2.10) to be valid for k, # 0. 

3. Discussion and comparison of the Gaussian-column model with the SOS model 

As we show in 0 2, the representation of the direct correlation function C (1.1) obtained 
earlier for the SOS model of the interface by Stecki et a1 (1986) exhibits features of 
universality. The asymptotic exponent scaling the interface width W with the external 
field G is also universal and equal to - f .  The longitudinal correlation length and 
other coefficients of relation (1.1) change linearly for two models with G'" (see figures 
4 and 7). The known equation (Stecki 1984) found for the SOS model 

e( k,; zl, z2)  = C ( A x  = 0;  zl, z2) + 2 C ( A x  = 1; zl, z2)cos k, 
with C ( A x )  = 0 for J A x J  3 2, is also universal. 

However, the representations of econd(kl) in these two models are a little different 
(see equations (1.3) and (2.10)). They differ by a factor (-l) 'Az',  which gives rise to 
an oscillating character of econd(k,) in the Gaussian model (positive for even values 
of Az, negative for odd A z )  compared with a smooth behaviour of ec;cond in the SOS 

model (for all Az, except IAzl= 1, e c o n d  > 0). The direct correlation function e for the 
Gaussian model also exhibits an oscillating character, but in spite of this the parametri- 
sation (1.1) is valid since the oscillating behaviour is included in econd(kl) (or 
M(k,, A z ) ) .  The fact that there is reasonable agreement, between the two models for 
the values of and other quantities summarised in table 1 is a consequence of the 
low temperature. 

We have also compared the effective interfacial tension which is a measure of 
surface stiffness and is an intrinsic property of the interface. For the SOS model we 
found linear variation with G (Stecki and Dudowicz 1986a): 

prCf f (G)  = preff(0) + aim pref f (0 )  = 2 sinh2(pJ) 
and this is also found to be valid for the Gaussian model. We find 

pr eff(0)Gauss > pr eff(0)SQS 
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These inequalities are consistent with the greater stiff ness of the Gaussian interface. 
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